The design is relatively simple and relies on two exotic acoustic phenomenon. The first is to create a material with a negative bulk modulus.
A material’s bulk modulus is essentially its resistance to compression and this is an important factor in determining the speed at which sound moves through it. A material with a negative bulk modulus exponentially attenuates any sound passing through it.
...
An important factor in this is how efficiently the sound can get into the chamber and here Kima and Lee have another trick. To maximise this efficiency, they drill a 50 millimetre hole through each piece of acrylic. This acts as a diffraction element causing any sound that hits the chamber to diffract strongly into it.
The result is a double-glazed window with a negative bulk modulus that strongly attenuates the sound hitting it.
Kima and Lee use their double-glazing unit as a building block to create larger windows. In tests with a 3x4x3 “wall” of building blocks, they say their window reduces sound levels by 20-35 decibels over a sound range of 700 Hz to 2,200 Hz. That’s a significant reduction.
...
See the full story here: http://www.technologyreview.com/view/516766/redesigned-window-stops-sound-but-not-air-say-materials-scientists/?utm_campaign=newsletters&utm_source=newsletter-daily-all&utm_medium=email&utm_content=20130708