Initial models indicate that placing charging coils in 10 percent of a roadway would extend the driving range of an EV from about 60 miles to 300 miles, says Srdjan Lukic, an assistant professor of electrical engineering at NCSU.
Wireless charging through magnetic induction—the same type typically used for electric toothbrushes—is being pursued by a number of companies for consumer electronics and electric vehicles (see “Wireless Charging—Has the Time Finally Arrived?”). Such chargers work by sending current through a coil, which produces a magnetic field. When a car with its own coil is placed above the transmitter, the magnetic field induces a flow of power that charges the batteries.
Stationary inductive chargers for electric vehicles typically use sensors to ensure that the receiver coils on the vehicle are aligned above wireless charging pads correctly.
See the full story here: http://www.technologyreview.com/news/521761/someday-your-ev-charger-may-be-the-roadway-itself/?utm_campaign=newsletters&utm_source=newsletter-daily-all&utm_medium=email&utm_content=20131119