philip lelyveld The world of entertainment technology

25Oct/14Off

How Magic Leap’s Augmented Reality Works

magic.leapx299Magic Leap’s patents suggest an alternative approach. They describe displays that can create the same kind of 3-D patterns of light rays, known as “light fields,” that our eyes take in from the real objects around us. Wetzstein and other researchers have shown that this allows your eyes to focus on the depths of an artificial 3-D scene just as they would in the real world—providing a far more realistic illusion of virtual objects merged with the real world.

Earlier this year, Wetzstein and colleagues used that technique to create a display that allows text to be read clearly by people not wearing their usual corrective lenses (see “Prototype Display Lets You Say Goodbye to Reading Glasses”). He previously worked on glasses-free 3-D displays based on similar methods. And last year, researchers at chip company Nvidia demonstrated a basic wearable display based on light fields.

One of Magic Leap’s patents describes how such a device, dubbed a WRAP, for “waveguide reflector array projector,” would operate. The display would be made up of an array of many small curved mirrors; light would be delivered to that array via optical fiber, and each of the tiny elements would reflect some of that light to create the light field for a particular point in 3-D space. The array could be semi-transparent to allow a person to see the real world at the same time.

Multiple layers of such tiny mirrors would allow the display to produce the illusion of virtual objects at different distances. However, Magic Leap’s patent also claims that a single layer of the mirrors would be enough if they were formed from “magnetic liquid.” That would allow the mirrors to be reprogrammed using a magnetic field to rapidly display points at different depths fast enough to fool the eye, like the frames of an animation.

Magic Leap’s greatest challenge may be to find a way to seamlessly integrate virtual 3-D objects created by that display with what a person sees in the real world. Doing so would require the system to sense the world in 3-D and understand exactly what a person is looking at and its exact position, says Wetzstein.

Altogether, many of the underlying techniques Magic Leap needs to realize highly realistic augmented reality have been demonstrated, says Wetzstein. But the company will have to refine and combine them in ways no one has yet managed to do.

See the full story here: http://www.technologyreview.com/news/532001/how-magic-leaps-augmented-reality-works/?curator=MediaREDEF

Comments (0) Trackbacks (0)

Sorry, the comment form is closed at this time.

Trackbacks are disabled.