philip lelyveld The world of entertainment technology

6Aug/21Off

Evaluation of the effect of standard neuronavigation and augmented reality on the integrity of the perifocal structures during a neurosurgical approach

OBJECTIVE

Intracranial minimally invasive procedures imply working in a restricted surgical corridor surrounded by critical structures, such as vessels and cranial nerves. Any damage to them may affect patient outcome. Neuronavigation systems may reduce the risk of such complications. In this study, the authors sought to compare standard neuronavigation (NV) and augmented reality (AR)–guided navigation with respect to the integrity of the perifocal structures during a neurosurgical approach using a novel model imitating intracranial vessels.

RESULTS

The median number of contacts tended to be lower with the use of AR than with NV (AR, median 1 [Q1: 1, Q3: 2]; NV, median 3 [Q1: 1, Q3: 6]; p = 0.074). The size of the target-oriented craniotomy was significantly lower with the use of AR compared with NV (AR, median 4.91 cm2 [Q1: 4.71 cm2, Q3: 7.55 cm2]; and NV, median 9.62 cm2 [Q1: 7.07 cm2; Q3: 13.85 cm2]). Participants had more trust in AR than in NV (the differences posttest minus pretest were mean 0.9 [SD 1.2] and mean −0.3 [SD 0.2], respectively; p < 0.05).

CONCLUSIONS

The results of this study show a trend favoring the use of AR over NV with respect to reducing contact between a clip applier and the perifocal structures during a simulated clipping of an intracranial aneurysm.

See the full story here: https://thejns.org/focus/view/journals/neurosurg-focus/51/2/article-pE19.xml

Comments (0) Trackbacks (0)

Sorry, the comment form is closed at this time.

Trackbacks are disabled.